搜索高级搜索
机器人网互动社区技术讨论专区机器视觉机器视觉标定相关知识概述
机器视觉使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。
大家在做什么
发表新主题  收藏 打印 推荐 
作者 问题:

机器视觉标定相关知识概述

发布时间: 2014-5-16 上午9:43

作者: Torrent

等级: 武林新秀

积分: 792 分

发帖数: 135 次

网站总积分: 792 分

经验值: 306.0

查看用户的所有发言

查看用户的个人主页

   机器视觉系统的主要功能可以分为定位和识别两大类。识别主要指的是从摄像机获取图像信息并计算三维空间中物体的几何信息,以由此重建和识别物体。
    空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何模型参数就是摄像机参数。在多数条件下,这些参数必须通过实验与计算才能得到,这个过程被称为机器视觉系统定标(或称为摄像机标定)。
    摄像机的标定过程就是确定摄像机的几何和光学参数,以及摄像机相对于世界坐标系的方位。由于标定精度的大小,直接影响着机器视觉的精度。因此,只有做好了摄像机标定工作,后续工作才能正常展开,可以说,提高标定精度也是当前科研工作的重要方面之一。

btos4_rob.jpg

 

    摄像机标定可以分为传统的摄像机标定方法和摄像机自标定方法两大类。
    一、传统的摄像机标定方法按照标定参照物与算法思路可以分成若干类,如基于3D立体靶标的摄像机标定、基于2D平面靶标的摄像机标定、以及基于径向约束的摄像机标定等。传统的摄像机标定需要标定参照物,基本方法是在一定的摄像机模型下,通过对特定标定参照物进行图像处理,为了提高计算精度,还需确定非线性畸变校正参数,并利用一系列数学变换公式计算及优化,来求取摄像机模型内部参数和外部参数。因此该方法在场景未知和摄像机任意运动的一般情况下,其标定很难实现。
    二、摄像机自标定方法在20世纪90年代初,由Faugeras,Luong,Maybank等人首次提出。这种自标定法利用摄像机本身参数之间的约束关系来标定,而与场景和摄像机的运动无关,所以更为灵活。
    摄像机自标定相对于传统方法有更好的灵活性和实用性,通过多年的不懈努力,理论上的问题已基本解决,目前研究的重点是如何提高标定算法的鲁棒性以及如何很好地用这些理论来解决实际视觉问题。为了提高鲁棒性,在实际应用中建议更多的使用分层逐步自标定方法,并应对自标定的结果进行线性优化。
    在行业应用中,机器视觉系统标定会用到标定板,主要的作用是为校正镜头畸变、确定物理尺寸和像素间的换算关系,以及确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系。标定板在图像测量、摄影测量、三维重建等应用中有着重要作用,可以提高测量及检测的精度。

   标签: 应用 机器视觉 系统 测量
引用 回复 鲜花 ( 0) 臭鸡蛋 ( 0) 有新回复时发送邮件通知

与  应用 , 机器视觉 , 系统 , 测量  相关的话题
快速回复
用户名: 
美国的游客       (您将以游客身份发表,请登录 | 注册 )  
标题: * 你还可以输入80
评论: * 你还可以输入20000
分享到: 新浪微博   qq空间   qq微博   人人网   百度搜藏  
验证码:  * 
维护专业、整洁的论坛环境需要您的参与,请及时举报违规帖子,如果举报属实,我们将给予相应的积分奖励。
谢谢您的热心参与!
返回机器视觉 | 返回技术讨论专区
本论坛仅陈述专家或个人观点,并不代表机器人网网站立场。
返回论坛页首